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Abstract  A method to locate quantitative trait loci 
(QTL) on a chromosome and to estimate their additive and 
dominance effects is described. It applies to generations 
derived from an F 1 by selfing or backcrossing and to dou- 
bled haploid lines, given that marker genotype information 
(RFLR RAPD, etc.) and quantitative trait data are avail- 
able..The method involves regressing the additive differ- 
ence between marker genotype means at a locus against a 
function of the recombination frequency between that lo- 
cus and a putative QTL. A QTL is located, as by other re- 
gression methods, at that point where the residual mean 
square is minimised. The estimates of location and gene 
effects are consistent and as reliable as conventional flank- 
ing-marker methods. Further applications include the abil- 
ity to test for the presence of two, or more, linked QTL and 
to compare different crosses for the presence of common 
QTL. Furthermore, the technique is straightforward and 
may be programmed using standard pc-based statistical 
software. 
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Introduction 

The availability of abundant, naturally-occurring, molec- 
ular genetic markers (RFLPs, RAPDs, isozymes, etc) dur- 
ing the last decade has generated renewed activity into 
counting, .locating and measuring the' effects of genes 
(polygenes or QTL) controlling quantitative traits (Beck- 
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mann and Soller 1986; Weller 1986; Edwards et al. 1987; 
Paterson et al. 1991; Simpson 1989; Luo and Kearsey 1991; 
Haley and Knott 1992; Marfinez and Curnow 1992; Stu- 
beret al. 1987). Interest particularly surrounds traits of ec- 
onomic importance in crop plants and domesticated ani- 
mals. 

Currently, the most popular analytical method to inves- 
tigate QTL is that of flanking-marker mapping, either by 
the log-likelihood approach of interval mapping, as imple- 
mented by Mapmaker/QTL (Lander and Botstein 1989), or 
by multiple regression (Haley and Knott 1992; Marfinez 
and Curnow 1992). The two methods yield very similar re- 
sults (Haley and Knott 1992; Martlnez 1994), but the mul- 
tiple-regression approach applies a more straightforward 
test of significance and is programmable using standard 
statistical packages. 

The efficiency of flanking-marker methods decreases 
as the number of incompletely-genotyped individuals in- 
creases. This difficulty has, in part, been overcome by a 
technique developed by Martlnez and Curnow (1994). 
Nonetheless, such approaches have problems separating 
one QTL from two on the same chromosome, and the use 
of three, or more, marker regression is advised (Martinez 
and Curnow 1992). The latter has the drawback of requir- 
ing large population sizes because the expected probabil- 
ity of certain genotypic classes occurring can be very small. 
Furthermore, these methods are not capable of combining 
the information from two, or more, populations, each hav- 
ing different markers. 

The present paper describes a 'marker-regression' ap- 
proach which can be used for populations derived from an 
F 1. It is as reliable as the interval-mapping and multiple- 
regression approaches, but has wider application and is ca- 
pable of hypothesis testing, it also relies on simple statis- 
tical procedures, using standard software: 

Theory 

Consider a pair of homologous chromosomes in an F 1 pro- 
duced from a cross between two, true-breeding lines, P1 



and P2. Let this pair of chromosomes be heterozygous for 
alleles at k marker loci, Mil and Mi2, depending on whether 
the allele came from P1 or P2 respectively and i=l,k, situ- 
ated at C i cM (Haldane) on the linkage map of that chro- 
mosome. Finally, let there be a single QTL (Q1Q2) on this 
chromosome at X cM. 

An F a of N individuals is derived from this F 1 and every 
individual is scored for a quantitative trait, Yj (where j= l  
to N), and its marker genotype determined at each of the k 
marker loci. From the latter, the map positions of the mark- 
ers (Ci) can be estimated (e.g. by Mapmaker; Lander et al. 
1987). 

Let the mean trait score of the three possible QTL gen- 
otypes in the F 2 be as follows: 

QIQ1 = ~ t + d  
QaQ2 = # - d 

QIQ2 = Id + h 

where ].t is the mean of the two homozygotes and d and h 
are the additive and dominance effects respectively, as de- 
fined by Mather and Jinks (1982) except that, since either 
Q1 or Qz may have the larger effect, d and h may be either 
positive or negative. 

Because it is not possible to genotype the QTL we have 
to rely on marker phenotypes, and the present procedure 
uses the mean scores of each of the three genotypes at every 
marker locus. Following standard theory (e.g., Cowen 
1988) 

MitMia = t.t + (1 - 2R i) d +2Ri(1 - Ri) h 

mizMi2  = ]1 - (1 - 2Ri) d +2Ri(1 - Ri) h 

MilMi2 = # + [1 - 2R i (1 - Ri) ] h 

where m i l M i l ,  etc., is the expected mean trait value of all 
those individuals having marker genotype M i l m i l ,  where 
i= 1 to k, and Rz is the recombination frequency between 
the QTL and the ith marker. Therefore, 
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(milMil  - Mi2Mi2 ) = (1-2Ri) d = 6i (1) 

MilMi2-  ~ (MilMil + Mi2Mi2) = (I-2Ri) 2 h ----/~i (2) 
Following Haldane (1919), (1-2Ri)=e -m, where m=l (X-  
Ci)/50 I, the mean chiasma frequency in that interval. 

The relationship between ~i, )t i and marker position in 
cM is shown by the curve in Fig. l(a) for a QTL at 
50 cM with gene effects d=h=l.  In practice, few markers 
are present and the observed outcome for a possible set of 
gix markers is illustrated by the bars of ~/in Fig. l(a). 

The present approach, to detect, locate and estimate the 
effect of a QTL, is based on finding the values of X, d and 
h which best fit the observed values of 8i and ~.i at map po- 
sitions C~. 

We note from equation (1) that ~.=(1-2Ri)d. Thus, if 
R i = 0 . 5 ,  i.e., there is no linkage between the QTL and the 
ith marker, then ~/=0; if Ri=O , i.e., complete linkage 
between the QTL and the marker, 6i=d. Equation (1) is thus 
a linear equation of the form y=O+bx. Therefore, if we re- 
gress ~i, i.e., y, on (1-2Ri), i.e., x, we should obtain a 
straight line of slope b=d passing through the origin. Sim- 
ilarly, from equation (2), ~i=(1-2Ri)Zh. This is also a lin- 
ear equation y=O+bx where y=2. i and x=(1-2Ri) 2. There- 
fore, regression yields b=h. It should be noted that ,~i and 
~i are orthogonal and are, hence, independent variables. 

In such a situation, the uncorrected sums of squares and 
products should be used to perform the regression analy- 
sis, i.e., 

b = ~,xy/~,x 2 = ~, (~i (l-2Ri)]~, (1-2Ri) 2, 

Regression SS = b~,xy = [~, 6 i (1-2Ri) ]2/~, (1-2Ri) 2, 

Residual SS = ~y2-Regression SS 
= E a 2 - - [ E  a i (1-2R~)]z/Z (1-2Ri) 2. 

The degrees of freedom (d]) for the regression and remain- 
der are 1 and k-1 respectively but we will need to recon- 
sider them later. 
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Fig. 1 a, b The effects of one QTL on ~i, Zi and residual mean 
squares associated with genetic markers. (a) Relation between ~i, Zi 
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However, since the true position, X, of  the QTL is un- 
known, the true values of R i c a n  not be calculated. None- 
theless, the regression analysis of variance for ill may be 
carried out at a range of possible positions of  the QTL along 
the chromosome from which R i c a n  be calculated. The es- 
timated QTL location is then the position at which the re- 
sidual SS is at a minimum. 

Example 

The procedure, as outlined above, is illustrated for a set of 
simulated data. The F2 population generated had a single 
QTL situated at 50 cM from the left-most marker locus, 
having d=l.0,  h=0.5 and a narrow-sense heritability (h 2) 
of 0.1, i.e., the expected phenotypic variance of the F 2 was 
5.0. Six, equally-spaced markers (k=6) were set at 0, 20, 
40, 60, 80 and 100 cM. The data in Table 1 are based on a 
random sample of  300 F 2 individuals and give the individ- 
ual marker-genotype means for the trait at each locus, to- 
gether with the estimated fii values. The cumulative marker 
positions along the chromosome, estimated from the data, 
are shown in Table 2. Any differences between these esti- 
mated positions and those set above are due to sampling 
but the estimated values are used in subsequent computa- 
tions to mimic a real situation. 

Table 2(a) illustrates the data for regressing ~i on 
( l-2Ri)  for a putative QTL at 30 cM. Using the sums of 

Table 1 Marker genotypemeans 

Marker Marker genotype ~ ~ 
locus 

M1M1 MIM2 M2M2 

1 23.5669 22.8834 22.5475 0.5097 -0.1738 
2 23.9616 22.8657 22.3639 0 .7988  -0.2970 
3 23.8994 23.0770 21 .6758 1 . 1 1 1 8  0.2894 
4 24.0287 23.0861 21 .6767  1 . 1 7 6 0  0.2334 
5 23.6174 23.0387 22.1215 0.7480 0.1692 
6 23.1662 23.0273 22.5919 0 . 2 8 7 1  0.1482 

squares and products in Table 2(b), the regression analy- 
sis of  variance in Table 3(a) was obtained. Since fii was cal- 
culated from the phenotypic means of two genotypic 
classes, the values obtained for the mean squares must be 
adjusted in line with the error, Ve, which was based on in- 
dividuals. For example, since 

fii:Z (M1M 1 - M2M2) , 

then the variance of 6 i, Vai=l /4(V~+Vg;;~) .  
Now 

VM-~ =VE/n 

where n is the number of individuals of that genotype in 
the F 2 and is expected to be 1/4N for M1Mt or M2M 2 and VzN 
for MIM 2. 

Thus, 

Vai=�88 Ve/ �88 Ve/ �88 = 2 VJN.  

Similarly, 

V~ i = 4 VE/N. 

Consequently, the SS in the regression ANOVA must be 
adjusted by multiplying by V~N (i.e., 150) for ~i and by �88 
(i.e., 75) for '~i, since the F2 was of size N=300. 

The error mean square, V E, is simply the F 2 variance 
less the genetical variance at the QTL. The genetical var- 
iance for a single locus is 1/2d2+l/4h 2 and, in the results 
of Table 3(a), d=  1.3679, h= 0.0122 and 17F2=4.9677; thus, 
~?E=4.03. 

We see from Table 3(a) that the 'residual '  MS for ~i is 
highly significant, indicating that fitting a model involv- 
ing a single QTL at that position, 30 cM, does not explain 
the fi/and ~i values observed, even though the estimate of  
d is highly significant. 

A computer program may be written to repeat this anal- 
ysis for a putative QTL at regular positions along the chro- 
mosome and compute the residual MS at each position. The 
graph of residual MS for 6i against position on the chro- 
mosome is shown in Fig. l(b). There is a minimum at 54 
cM indicating the most-likely position of the QTL, and the 

Table 2 Illustration of linear regression approach. (a) Data set with 
SS and SR Data for fii and )~i from Table 1 
(a) 

six marker loci and a putative QTL at X=30 cM and (b) Regression 

Marker Marker Distance of QTL (x a) (Yd) (xh) (Yh) 
locus m (i) Position (ci) from m (i) I(x-ci) l (1-2Ri) fii (1-2Ri) 2 ~i 

1 0.0 30.0 0.5488 0.5097 0.3012 
2 20.6 9.4 0.8286 0.7988 0.6866 
3 45.2 15.2 0.7379 1.1118 0.5445 
4 64.5 34.5 0.5016 1.1760 0.2516 
5 82.5 52.5 0.3499 0.7480 0.1224 
6 103.7 73.7 0.2290 0.2871 0.0524 

- 0.1738 
- 0.2970 

0.2894 
0.2334 
0.1692 
0.1482 

(b) 

~x 2 1.9587 0.9397 
y~y2 4.1589 0.3072 
Y, xy 2.6794 - 0.0115 



Table 3 Regression analyses 
for 6 i and "~i. (a) for a QTL at 
X=30 cM and (b) for a QTL at 
X=54 cM (the optimum). 
VF2=4.9677 for 299 df 

(a) ANOVA 

Source df SS MS Adj MS ~ F Sign 

6i Regression 1 3.6653 3.6653 549.80 37.1 *** 
~i Residual 5 0.4936 0.0987 14.81 3.7 ** 
�9 ~i Regression 1 0.0001 0.0001 0.01 < 0.1 ns 
~i Residual 5 0.3071 0.0614 4.61 1.1 ns 
Error 287 4.03 

Parameter estimates: d= 1.3679; h=0.0122 
+ For S i, MS x ~NwhereN=size ofF 2 (300) 
For "~i, MS x �88 where N= size of F 2 (300) 

(b) ANOVA 

Source df Adj MS F Sign 

~i Regression 2 306.9805 76.50 *** 
~i Residual 4 2.4736 0.62 ns 
~-i Regression 1 7.3693 1.84 ns 
"~i Residual 5 3.1344 0.78 ns 
Error 287 4.013 

Parameter estimates: d= 1.3654; h =0.2949 
** P _< 0.01; *** P < 0.001; ns=not significant 

Table 4 Estimates of QTL po- 2 
sition and effects from marker h~ 
regression and Mapmaker/QTL 
based on 100 simulations of 
two genetic models, together 
with the correlations between 0.1 
methods (r:98 dy') 

Expected Estimates (standard deviation) r 

Marker regression Mapmaker/QTL 

0.05 

X 50.0 50.16 (8.20) 49.80 (7.80) 0.68 
d 1.0 1.00 (0.20) 1.01 (0.20) 0.79 
h 0.5 0.46 (0.33) 0.49 (0.35) 0.75 

X 62.2 63.20 (13.02) 63.10 (10.83) 0.54 
d 0.5 0.52 (0.16) 0.52 (0.14) 0.89 
h 0.5 0.46 (0.23) 0.50 (0.23) 0.83 
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analysis of variance at this point is shown in Table 3(b). 
However, because we have estimated the map position of 
the QTL, X, the regression SS now has 2df, one each for 
the estimation of b and X, while the residual SS has k-2df, 
as explained by Haley and Knott (1992). The residual MS 
is not significant for either ~i or ~i while the additive ef- 
fect of the QTL, d, tested by the regression, is highly sig- 
nificant and positive, indicating that Q1 is the increasing 
allele. The dominance effect is also positive but not sig- 
nificant. The data are thus consistent with a QTL at 54 cM 
with d=1.3654 and ~=0.2949 (although the latter is not 
significantly different from zero). 

Although a similar analysis was performed to find the 
point of minimum residual MS for "~i, a very flat curve with 
an imprecisely-defined minimum was obtained. The esti- 
mates of dominance effects were therefore based on the X 
value determined from ~/. 

Test of reliability 

The reliability of the marker-regression approach was 
tested by computer simulation. A wide range of genetic sit- 
uations was examined, varying in the location of the QTL, 
its heritability and genetic effects. One hundred replicate 
samples, each of 300 F 2 individuals, were simulated from 

every genetic situation. The QTL location and the gene ef- 
fects of each sample were estimated using both the present 
marker-regression method and Mapmaker/QTL, and the 
mean and standard deviation of the estimates over repli- 
cates, together with the correlations between the two meth- 
ods, were computed. The results for two genetic situations, 
with contrasting parameters, are illustrated in Table 4, but 
they were typical of all models explored. 

Table 4 shows that the estimates of QTL position and 
genetic effects, obtained by the present approach, are con- 
sistent and are comparable to those of Mapmaker/QTL, 
both in mean and standard deviation. Moreover, the esti- 
mates from the two methods are significantly correlated 
over simulations. The correlation coefficient is far from 
unity, an expected result since different sub-sets of the data 
were used. By inference from the results of Haley and Knott 
(1992) and Marfinez and Curnow (1992), therefore, the re- 
sults of the present technique should be comparable to 
those obtained by flanking-marker regression. 

Tests of significance 

As discussed by others (Lander and Botstein 1989; Haley 
and Knott 1992), the significance level to be used in these 
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types of analysis is not yet clear. In fact the latter authors 
simply state that, " ... large values of (the test statistic) 
support the hypothesis that a QTL is present". 

Because the number of  independent tests is high, it is 
conventional to set the significance level at 0.001, i.e., ad- 
equate for at least 50 tests with a combined probability of  
0.05. In the present context, with a regression SS having 
2df and an error variance with a very large number of df, 
this requires ;t5212] of  13.8 (or F of 6.9). Simulations with 
no QTL segregating on the chromosome indicate that this 
is a reasonable criterion as it leads to only 3% false posi- 
tives. Similar simulations of  a single QTL with individual 
heritabilities of 0.05, 0.02 and 0.01 result in a significant 
QTL being identified on approximately 95%, 60%,and 
30% of'occasions, respectively. Such power is at least as 
~good as other methods. 

to P2: (4) 

1/2 ( M - i l M i 2 - ~ 2 ) - - V 2  ( l -2R)  (d + h) 
(3) - (4) = (1-2R) d 

(ii) DH Lines: 1/2 ( ~ 1  - Mi2Mi2) = (1-2R) d (5) 

(iii) SSD Lines: �89 ( ~ t  - Mi2Mi2) - [(1-2R)/(1 +2R)] d. 
(6) 

Finally, although we have confined attention to QTL 
and markers on one chromosome, the method can be ap- 
plied sequentially to all chromosomes once the linkage 
groups have been ascertained. The error variance, VE, used 
earlier, will include variation from genetic segregation at 
all other unlinked QTL. However, when several QTL have 
been located by this approach their combined effects can 
be removed to minimise V E and so improve efficiency. 
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